LEADER TEST INSTRUMENTS LEADER TEST INSTRUMENTS

MODEL LDM - 815

TR DIP METER

INSTRUCTION MANUAL

LEADER ELECTRONICS CORP.

2-6-33 TSUNASHIMA-HIGASHI, KOHOKU-KU, YOKOHAMA, JAPAN.

LEADER INSTRUMENTS CORP.

HEAD OFFICE 151 DUPONT ST., PLAINVIEW, N.Y. 11803 U.S.A. (516) 822-9300

WEST COAST DIVISION 7733 DENSMORE AVE., VAN NUYS, CA. 91406 U.S.A. (213) 989-2760

LEADER ELECTRONICS CORP.

Symbol	De	Leader Pats No				
	PRINTED CIRCUIT BOAD					
		T-572A				
	SOCKET AND JACK					
J1 J2	Type FT-243 cryst Mini phone jack	FT-243 SG-8050				
		METER	}			
M1	Plastic meter	100µA	KM-48-100µA			
		BATTER	Υ			
В1	Dry battery	9V	006P			
	ACCESARY					
	Mini phone plug		SH-5006			

GENERAL

LDM-815 is a transistorized dip meter for rapidly checking circuits and components in receivers, transmitters, antennas, etc., in the 1.5 to 250MHz range. It is designed for many applications in Amateur Radio stations and service shops.

SPECIFICATIONS

Frequency Range

1.5 to 250MHz with six plugin coils:

Band	Ran	ge	Color Code	
A	1.5~	4MHz	Red	
В	3.3~	8MHz	Yellow Red	
C	6.8~ 1	8MHz	Yellow	
D	18 ~ 4	7MHz	Yellow Green	
E	45~11	0MHz	Blue	
F	100~25	0MHz	Purple	

Modulation : Approx. 2kHz; sine wave

Crystal Oscillator : 1-15MHz, crystal in FT-243 holder

Power Supply : 9 volt battery: 006p, NEDA 1604,

Eveready 216, Burgess 2U6, or

equivalent

Current Cosnumption: 2mA, maximum

Semiconductor

Complement : 2 transistors and 1 diode

: 175 (H) \times 65 (W) \times 50 (D) mm; Size and Weight

 $6\frac{7}{8}$ " (H) $\times 2\frac{9}{16}$ " (W) $\times 2$ " (D) approx. 0.5 kg

1.1 lbs.

Accessories, Supplied : Earphone plug 1ea.

3. PANEL CONTROLS

Frequency dial : Six frequency scales calibrate according to bands and color of the coil in

use.

Meter : For indicating resonance and for

battery check; sensitivity is 100µA

at full scale.

Function switch : Three positions

OSC : For use as a dip meter or

absorption wavemeter.

MOD : Applies 2kHz AM to the

carrier output.

BATT : For checking condition of

CHECK internal battery.

SENSITIVITY

: Adjusts the output level of the oscil-

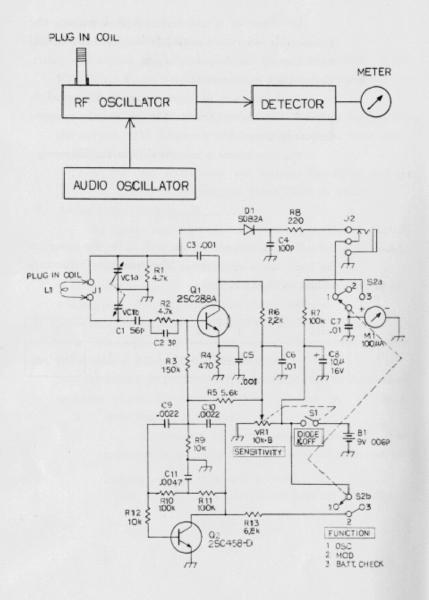
adjuster with switch lator; at OFF, the power supply is cut

off and the instrument can be used as

an absorption wavemeter.

Earphone jack : For monitoring AM signals with a

crystal earphone (not supplied).


4. CIRCUIT DESCRIPTION

The RF oscillator is a Colpitts type using a silicon transistor. The RF voltage is rectified with a diode and the current is indicated on the $100\mu A$ DC meter. When the dip meter frequency is in resonance with the external circuit, the meter pointer will dip. The strength of the oscillator output is controlled with the SENSITIVITY adjuster.

When required, amplitude modulation can be applied to the RF oscillator output. A twin-T type circuit is used for the 2kHz source.

LDM-815 Parts List

Symbol	5	Descript	tion		Leader Parts No		
	RESISTORS						
R1		0.2594	4.7ΚΩ	± 5%	B.D¼PNY 4.7KΩ°		
R2	Carbon film	0.25W	4.7KΩ	± 5%	BD¼PNY 4.7KΩI		
	Carbon film	0.25W	150ΚΩ				
R3	Carbon film Carbon film	0.25W		± 5%	RD¼PNY 150KΩJ		
R4	Carbon film	0.25W	470Ω	± 5%	B.D%PNY 470\$2J		
R5	Carbon film	0.25W	5.6KΩ	± 5%	B.D¼PNY 5.6KΩ		
R6	Carbon f.lm	0.25W	2.2ΚΩ	± 5%	RD4PNY 2.2KΩ		
R7	Carbon f.lm	0.25W	1:00K\$2	± 5%	BD%PNY 100KΩJ		
R8	Carbon film	0.25W	220Ω	± 5%	RD¼PNY 220ΩJ		
R9	Carbon film	0.25W	10ΚΩ	± 5%	B.D¼PNY 10KΩJ		
R10	Carbon f.lm	0.25W	100KΩ	± 5%	RD4PNY 100KΩJ		
R11	Carbon film	0.25W	100K22	± 5%	BD¼PNY 100KΩJ		
R12	Carbon film	0.25W	10KΩ	± 5%	ED¼PNY 10KΩJ		
R13	Carbon film	0.25W	6.8ΚΩ	± 5%	B.D%PNY 6.8KΩΓ		
			VARIABL	E RESIST	OR		
WR1	Carbon film	0.1W	10KΩ	± 20%	V161A-1S-B10 KΩ		
			CAP	ACITORS			
C1	Mica film	500W'V	56pF	± 10%	FM07ZC 560K 5		
C2	Mica film	500WV	3pF	±10%	FM05ZC 030K 5		
C3	Ceramic	500WV	0.001AF	+10075	CK61YZ 102PZ500		
C4	Mica film	50WW	100pF	± 10%	VFM07:ZC 101 K		
C5	Ceramic	50WW	0.01µF	+ 80% 20% + 10 0%	F.D204YM 103Z50		
C6	Ceramic	500WV	0.001AIF	+ 10.0%	CK61YZ102PZ500.		
C7	Ceramic	50WW	0.01µF	- 10% + 80%	ED204YM 103Z50		
C8	Electrolytic	16WV	10µF	- 20%	CE0 4W1C100		
C9	Plastic film	50WW	0.00224F	±10%	CO92M 1H 222K		
C10	Plastic film	50WV	0.0022µF	± 10%	CO92M1H222K		
C11	Plastic film	50WV	0.0047µF	±10%	CQ92M1H222K		
CII	7 MAIC 111111	30W V					
			VARIABLE	CAPACIT	OR		
VC1	Air variable c	ap.	5.75~ 1.25.55	pF ±1%	C221A112		
			TRAN	SISTORS			
Q1	Silicon NPN Silicon NPN		2SC288A		2SC288A		
Q2	Sillouriers		2SC453-D		2SC458-D		
				ODE			
D1	Silicon point c	ontact	SD82A		SD82A		
			PLUG	IN COILS			
Ll	6 Plug-in coils,	band A \sim F			L-393C		
			SWIT	CHES			
S1	Gang with VR	1					
S2	Slide				S-2330-15mm		

In the absorption wavemeter function, the RF oscillator power is cut off and the tuned and diode-meter circuits are used.

5. PRECAUTIONS IN OPERATION

- During standby periods or when the dip meter is not in use, set SENSITIVITY adjuster at OFF (clicked). This will prolong battery life.
- Handle the coils carefully when inserting or removing same from the socket.
- During measurements, the coil should be loosely coupled to the test circuit. The coupling must be as loose as possible to obtain proper meter indication. Close coupling will introduce errors in measurement.

IMPORTANT! When checking transmitting equipment, close coupling will damage the diode detector by overload.

4. Disconnect the battery from the internal circuit when the dip meter is not in use for long periods.

6. OPERATION

- 1 Battery Check and Replacement
 - 1. Set FUNCTION at BATT CHECK.
 - Advance SENSITIVITY to power at on (clicked condition). The meter pointer should swing to the BATT OK portion on the scale. If not, renew the battery.

NOTE: To install or replace the battery, remove the covers as follows:

Remove the two screws each at the right and left sides of the instrument; take off the covers. Loosen

the battery clamp screw at center of the chassis and take out the battery. Remove the snap terminals from the battery. To install; reverse steps. Tighten the clamp screw and put on the side covers.

- 3. After this check, set SENSITIVITY at OFF (clicked).
- 2 Use as a Dip Meter
 - 1. Plug the coil for the band in use in the socket.
 - 2. Set FUNCTION at OSC.
 - Advance SENSITIVITY past the click point so that the meter pointer swings to about 0.8.

NOTE: When the "F" coil is used, there will be some variation in the meter deflection as the frequency dial is rotated. This effect will be present when the coil is not coupled to the test circuit. Care must be taken during use not to confuse this condition with the actual dip caused by the test circuit.

- 4. Couple the coil loosely to the test circuit and rotate the frequency dial in small steps until a dip is observed on the meter. (When there are two dips close together, place the coil farther from the test circuit.)
- 5. Adjust the frequency dial until the maximum dip is obtained.
- 6. Note the frequency on the frequency dial.
- 7. Set SENSITIVITY at OFF (clicked) after the tests.
- Examples of typical coupling methods are shown in Fig. 1.
 NOTE: It is important that the power, if applied, to the test circuit is turned off.

With use of a standard 100pF capacitor, the measureable inductance range is from 113µH to 0.004µH with use of the frequency range in the dip meter. B: Capacitance measurement:

An inductance of known value is connected in parallel with the unknown capacitor, and the resonant frequency is noted.

The capacitance is calculated from the following:

$$C = \frac{25,330}{L_{\mu H} (f_{MHz})^2} pF$$

For the "standard", the coils in the dip meter can be used when applicable. The respective inductance values are shown below:

Band	A	В	С	D	Е	F
L _{μH}	161 _# H	39 _{µH}	8.4 _{µH}	1.2 _{\(\mu\)} H	$0.22 \mu \mathrm{H}$	0.047 _{µH}

contact is the + side.

.6 Use as a Crystal Oscillator

In place of the coil, a quartz crystal, 1 - 15MHz, in the FT-243 holder, inserted in the socket will produce output at the crystal frequency.

Set FUNCTION at OSC and SENSITIVITY as required for the output. The frequency dial is rotated until the most stable condition is obtained.

Set the dip meter near the receiver for signal pickup. For modulated output, set FUNCTION at MOD.

7 Audio Signal Output

Set up the instrument for dip meter operation, see Sect. 2, in the socket (However, the RF is not used.) Set FUNCTION at MOD.

Audio output at approximately 2kHz is available at the PHONE jack. The plug connections are as follows:

Inner contact for the "hot" side and the sleeve for ground.

This signal can be used for checking audio circuits.

8 Inductance and Capacitance Measurements

Unknown inductances and capacitances can be determined with use of the dip meter, see Sect. 5-2 and "A" in Fig. 1.

A : Inductance measurement:

A capacitor of known value is required. This capacitor is connected in parallel with the unknown coil and the resonant frequency is noted.

The inductance is calculated from the following:

$$L = \frac{25,330}{C_{\mathbf{p}}F~(f_{\mathbf{MHz}})^2} \mu H$$

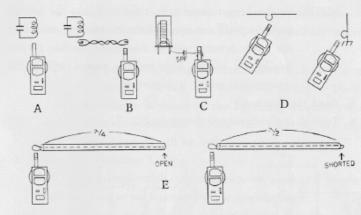


Fig. 1 Dip meter coupling methods.

A and B: Direct or link types.

- C: For shielded circuits; the coupling capacitor should be as small as possible.
- D: Determination of resonant frequency of an antenna; use a 1-turn coil in the antenna. (For vertically grounded antennas, do not forget to make the ground connection.)
- E: Determination of electrical length of quarerwave and half-wave coaxial feeders.
- 3 Use as an Absorption Wavemeter
 - 1. Plug the coil for the band in use in the socket.
 - 2. Set SENSITIVITY at OFF (clicked).
 - 3. Set FUNCTION at OSC.
 - 4. When the coil is coupled to the coil in an oscillator, or RF tank coil in a transmitter, the meter pointer will swing upward when tuned to resonance. The amount of the swing depends on the strength of the oscillations and/or coupling distance.

- NOTE: In checking transmitters, take care that the energy picked up will not overload the instrument, otherwise the diode detector will be damaged. Further, do not touch any of the high voltage points within the transmitter; safety is important.
- 5. Read the frequency.
- 6. Typical applications are shown in Fig. 2.

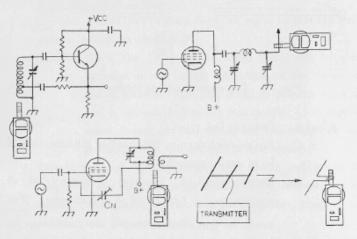


Fig. 2 Absorption wavemeter applications.

- A: Measurement of oscillator frequency.
- B: Measurement of frequency at the transmitter output.

 To check for harmonics or parasitics, slowly rotate the frequency dial for the indications; change the coils as necessary. The meter deflection will indicate the relative strength of these signals.
- C : Neutralizing adjustments can be made by first cutting off DC supply to the plate and screen grid circuits. The

tank circuit is then tuned for maximum indication. Next the neutralizing capacitor, CN, is adjusted for minimum indication.

D: Use as a field strength meter is shown. A short antenna is coupled to the coil for signal pickup. When the wavemeter is tuned to the operating frequency and at different positions around the antenna, the relative field strength will be indicated on the meter.

4 Short Wave Receiver Testing

In this application, the dip meter is used as a simple test oscillator, with or without amplitude modulation.

The test frequency is set with the suitable coil and frequency dial. The dip meter is placed near the receiver; the "input signal strength" can be varied with the distance between the dip meter and the receiver.

For operation, set SENSITIVITY for RF output.

Communications receivers with beat oscillators can be tested by setting FUNCTION at OSC for the CW signal.

When an AM signal is required, set FUNCTION at MOD. A tone of approximately 2kHz will be heard in the loudspeaker.

Adjustments, as required, can be made, with the respective signals, in the receiver circuits.

5 Monitoring Phone Signals

The wavemeter application, see Sect. 5.3, can be used for monitoring AM phone signals.

A crystal earphone is connected to the earphone plug and the plug is inserted in the PHONE jack.

Tune to the RF test frequency using the proper coil. For "remote" indication of the modulated output, a 100µA DC meter can be connected to the earphone plug; the inner